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ABSTRACT

This article is aimed at studying computational solution of variable or-
der fractional advection-dispersion equation for one-dimensional and two-
dimensional spaces utilizing spectral collocation method. In the consid-
ered model, the time derivative is Coimbra fractional derivative and space
derivative is a Riemann-Liouville derivative. Jacobi polynomials are ap-
plied as basic functions in approximation of the solution. The presented
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approach is an application of the shifted Jacobi-Gauss collocation (SJ-G-
C) and the shifted Jacobi-Gauss-Radau collocation (SJ-GR-C) methods
using for discretizing along space and time, respectively. Using the re-
lated collocation points, the problem would be changed to an algebraic
equation system, which can be tackled applying a computational tech-
nique. At the end, several examples in one and two dimensional cases
have been solved by introduced approach, it would be shown that the
proposed numerical algorithm has considerably higher accuracy in con-
trast to the existing computational schemes including finite difference
approach.

Keywords: Advection-dispersion equation, Fractional derivative of variable-
order, Shifted Jacobi polynomials.
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1. Introduction

Differential equations of fractional type have several applications in the var-
ious fields of science and engineering. They have significantly grown in recent
years Chen et al. (2014), Hosseini et al. (2017), Magin (2006), Ortega et al.
(2018), Sakar and Güney (2017), Sontakke et al. (2018), Ünal and Gökdoğan
(2017). Some works have been done on analytical solution of these equations
Pandey et al. (2011). However, the analytical solution of such equations can-
not be furnished due to non-locality feature of fractional derivatives, thus nu-
merical solution of these equations is of great importance. We will focus on
fractional advection-dispersion equation (FADE) in this article Schumer et al.
(2001), Zhang et al. (2007). FADEs are used to model most sciences of physics,
chemical engineering, and geology including the description of heat transfer in
film draining Isenberg and Gutfinger (1973), porous media flow Kumar (1983),
transfer of mass Guvanasen and Volker (1983), water transport in soils Par-
lange (1980), transport of pollutants in rivers and streams Chatwin and Allen
(1985), Clavero et al. (2003), thermal pollution in river system Chaudhry et al.
(1983) and etc.

Several methods have been suggested to obtain analytical and numerical
solutions of these equations. Pandey et al. (2011) proposed a theoretic scheme
via the analytic method of homotopy for FADEs. Meerschaert and Tadjeran
(2004) implemented an Euler method of implicit type via improved Grunwald
estimation for FADEs and showed that the approach is compatible and un-
conditionally stable. Furthermore, some other schemes were presented to ap-
proximate FADE solutions like finite difference Liu et al. (2007), finite ele-
ment Ervin and Roop (2006), finite volume Hejazi et al. (2014), and spectral
approaches Carella and Dorao (2013), Zheng and Wei (2010). Operators of
FADE’s fractional derivative are in terms of space and time, which the order
can be fixed or variable. The variable order fractional differential operator is a
natural candidate for presenting a fruitful mathematical framework for describ-
ing complicated dynamic problems Gómez-Aguilar (2018), Sun et al. (2009),
Tseng (2006). The following FADE with space-time variable order would be
surveyed in this study

D
ξ(x,y)
t f (x, y, t) =ϑ(R0 D

η1(x,y,t)
x f (x, y, t) + R

0 D
η2(x,y,t)
y f (x, y, t))

− κ(R0 D
ρ1(x,y,t)
x f (x, y, t) + R

0 D
ρ2(x,y,t)
y f (x, y, t))

+ S (f, x, y, t) , (x, y, t) ∈ [0, L]× [0, I]× [0, T ] ,

(1)

wherein the initial and boundary conditions are defined by

f (x, y, 0) = ϕ1 (x, y) , (x, y) ∈ Ω = [0, L]×[0, I], (2)
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f (x, y, t) = ϕ2 (x, y, t) , (x, y) ∈ ∂Ω, t ∈ [0, T ] , (3)

wherein ϑ, κ > 0, 0 < ξ ≤ ξ(x) ≤ ξ ≤ 1, 1 < η ≤ η1, η2 ≤ η ≤ 2 and
0 < ρ ≤ ρ1, ρ1 ≤ ρ ≤ 1. Here ∂Ω is the boundary of Ω, and ϕ1and ϕ2 of the
functions are smooth enough. In addition, fractional derivatives of time and
space are of Coimbra Coimbra (2003) and Riemann-Liouville Zhuang et al.
(2009) types, respectively. Also one dimensional FADE can be easily deduced
through equation (1).

This article proposes a numerical solution method for variable-order frac-
tional advection-dispersion equations (VO-FADEs). A VO-FADE might con-
tain partial differential operators whose orders can be functions in the time and
space variables. The solutions of VO-FADEs are complicated in general, and
they are not given in practice. Therefore, to construct accurate and efficient
numerical solution methods for VO-FADEs is an important task. Zhang et al.
(2014) presented an Euler scheme of implicit type to tackle these equations in
one-dimensional state and they obtained results of reasonable accuracy using
considerable number of points.

Spectral methods are powerful tools for tackling different types of differen-
tial equations, Atabakan et al. (2014), Bhrawy and Zaky (2015), Bhrawy and
Alghamdi (2012), Canuto et al. (2006), Eslahchi et al. (2014). Spectral col-
location scheme has increasingly been used to tackle differential equations of
fractional type Bhrawy et al. (2016a,b, 2015). Two attributes of exponential
convergence and ease of use have led the researchers to tend to this method.
Special types of this method, which are more applicable and widely used, are
Galerkin, tau Ahmadian et al. (2017), and collocation methods.

In the study, a spectral algorithm would be used to discretize space and
time in order to provide a highly accurate numerical solution for FADEs in
one-dimensional and two-dimensional cases. Moreover, we will reveal that the
obtained results are far more accurate compared to the findings provided by
Zhang et al. Jacobi-Gauss colocation method will be utilized to solve FADEs
in this study. The major step to this approach is considering the solution as a
series of shifted Jacobi polynomials Ahmadian et al. (2016) with unknown co-
efficients. These coefficients are selected so that the FADE remainder would be
zero at collocation points. Our purpose in applying shifted Jacobi polynomials,
P

(ω,%)
j (z) (j ≥ 0, ω, %> − 1), in addition to the orthogonal properties of these

polynomials is to obtain an approximate solution based on Jacobi parameters
ω and % and by changing these parameters we can use ultra-spherical, shifted
Chebyshev of the 1st and 2nd types, shifted Legendre and the third and fourth
kinds of the shifted Chebyshev polynomials (see Remark 2.1).
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Here, a mixed collocation method will be used to discretize along time and
space. To be more precise, shifted Jacobi-Gauss and shifted Jacobi-Gauss-
Radau collocation schemes are used to discretize the spatial and temporal
variables, respectively Canuto et al. (2006). Finally, through implementing
collocation method on FADE and boundary and initial conditions, an equation
system is constructed, that could be easily resolved with a classic numerical
technique and the unknown coefficients would be subsequently attained. At
the end, various FADEs with fractional and fixed order derivative would be
solved in 1D and 2D cases and highly accurate solutions would be furnished
for these problems.

The remaining parts of this work will be provided as follows. In Section 2,
a preliminaries to the notions of Riemann-Liouville and Coimbra fractional
derivatives as well as basic concepts of Jacobi polynomials would be men-
tioned. Spectral collocation method for discretizing space and time variables in
advection-dispersion equation in 1D and 2D states is brought forward in Sec-
tion 3. The numerical experiment for indicating high precision and efficiency
of the presented technique in contrast to the other approaches have been pre-
sented in section 4. Finally, a summary of the presented scheme will be stated
in Section 5.

2. Preliminaries

In this part, firstly, variable order fractional derivatives in equation (1)
would be defined. Then, definitions of shifted Jacobi polynomials and their
fractional derivatives will be provided.

2.1 Fractional derivatives definitions

Definition 2.1. Coimbra Coimbra (2003) fractional differential operator with
variable order of ξ(x) is given as follows when 0 < ξ(x) ≤ 1:

D
ξ(x)
t f (x, t) =

1

Γ (1− ξ(x))

∫ t

0+

(t− σ)
−ξ(x) ∂f(x, σ)

∂σ
dσ +

(f (x, 0+)− f(x, 0−))t−ξ(x)

Γ (1− ξ(x))
,

(4)

wherein Γ (·) shows function of Euler Gamma.

Malaysian Journal of Mathematical Sciences 143



Soltanpour Moghadam, A. et al.

Suppose that f∈C2(Ω), we will survey the solution f (x, t) for t≥0. As
a result, it is considered that this characteristic of f(x, t) in t = 0 is good
enough, thus in the case of f (x, 0+) = f(x, 0−) in the Coimbra fractional oper-
ator definition, the operator would be correspondent to the well-known Caputo
fractional operator in Sun et al. (2012), Zhuang et al. (2009).

Definition 2.2. Variable-order fractional differential operator of Riemann-
Liouville Zhuang et al. (2009) from η(x, t) order is defined by:

R
0 D

η(x,t)
x f (x, t) =

[
1

Γ (m− η(x, t))

dm

dσm

∫ σ

0

(σ − δ)m−η(x,t)−1
f (δ, t) dδ

]
σ=x

,

(5)

where m− 1 < η(x, t) ≤ m .

2.2 Jacobi polynomials (JP)

We will introduce the Jacobi polynomials in this subsection. Jacobi poly-
nomials is denoted by P

(ω,%)
j (z), (j = 0, 1, . . .) where ω, %>−1 creates an

orthogonal system on interval of [−1, 1] in terms of the function of weight
w(ω,%)(z) = (1− z)ω(1 + z)

% Szeg (1939). In other words:(
P

(ω,%)
k (z) , P

(ω,%)
l (z)

)
w(ω,%)

=

∫ 1

−1

P
(ω,%)
k (z)P

(ω,%)
l (z)w(ω,%) (z) dz = h

(ω,%)
k δlk,

(6)

where δlk is the Kronecker function and

h
(ω,%)
k =

2(ω+%+1)Γ (k + ω + 1) Γ (k + %+ 1)

(2k + ω + %+ 1)k!Γ (k + ω + %+ 1)
. (7)

Also P
(ω,%)
i (z), (i = 0, 1, . . .) can be written through the recursive relations

below Askey (1975):

P
(ω,%)
i+1 (z) =

(
a

(ω,%)
i z − b(ω,%)i

)
P

(ω,%)
i (z)− c(ω,%)i P

(ω,%)
i−1 (z) , i≥1,

P
(ω,%)
0 (z) = 1, P

(ω,%)
1 (z) =

1

2
(ω + %+ 2) z +

1

2
(ω − %),

(8)
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wherein

a
(ω,%)
i =

(2i+ ω + %+ 1) (2i+ ω + %+ 2)

2 (i+ 1) (i+ ω + %+ 1)
, (9)

b
(ω,%)
i =

(2i+ ω + %+ 1)(%2 − ω2)

2(i+ 1)(i+ ω + %+ 1)(2i+ ω + %)
, (10)

c
(ω,%)
i =

(2i+ ω + %+ 2) (i+ ω) (i+ %)

(i+ 1) (i+ ω + %+ 1) (2i+ ω + %)
. (11)

2.3 Shifted Jacobi polynomials (SJP)

Shifted Jacobi polynomials P (ω,%)
L,i (x) in the interval of [0, L] are furnished

by change of variable z = 2x
L −1 in the recurrence functions (8). Therefore, the

orthogonality condition (6) for the shifted Jacobi polynomials would be changed
as wL(ω,%)(x) = (L− x)

ω
x% and h

(ω,%)
L,k = (L2 )

ω+%+1
h

(ω,%)
k . Furthermore, the

recurrence relations (8) would be written as follows:

P
(ω,%)
L,i+1 (x) =

(
a

(ω,%)
i

(
2x

L
− 1

)
− b(ω,%)i

)
P

(ω,%)
L,i (x)− c(ω,%)i P

(ω,%)
L,i−1 (x) ,

P
(ω,%)
L,0 (x) = 1, P

(ω,%)
L,1 (x) =

1

L
(ω + %+ 2)x− (%+ 1),

(12)

where P (ω,%)
L,i (x) = P

(ω,%)
i

(
2x
L − 1

)
.

Remark 2.1. SJPs include an infinite number of orthogonal polynomials such
as shifted ultra-spherical polynomials (ω=%), shifted Chebyshev polynomials of
the 1st and 2nd types (ω=%= ± 1

2), shifted Legendre polynomials (ω=%= 0), and
the third and fourth kinds of the shifted Chebyshev polynomials (ω= −%= ± 1

2).

For the shifted Jacobi polynomials P (ω,%)
L,i (x) we have

P
(ω,%)
L,i (x) =

i∑
s=0

(−1)
i+s Γ (i+ %+ 1) Γ (i+ s+ ω + %+ 1)

Γ (s+ %+ 1) Γ (i+ ω + %+ 1) (i− s)!s!Ls
xs

=

i∑
s=0

Γ (i+ %+ 1) Γ (i+ s+ ω + %+ 1)

Γ (s+ ω + 1) Γ (i+ ω + %+ 1) (i− s)!s!Ls
(x− L)

s
.

(13)

Also, the SJPs end point values are specified as follows:

P
(ω,%)
L,i (0) = (−1)

iΓ (i+ %+ 1)

Γ (%+ 1) i!
, P

(ω,%)
L,i (L) =

Γ (i+ ω + 1)

Γ (ω + 1) i!
. (14)
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Jacobi-Gauss quadrature is used for accurate assessment of integral in relation
(6). For each φ∈S2N+1[0, L], we have:∫ L

0

φ (x)w
(ω,%)
L (x) dx =

N∑
j=0

$
(ω,%)
G,L,jφ

(
x

(ω,%)
G,L,j

)
, (15)

where SN [0, L] is a collection of polynomials of degrees less or equal than N .
In addition, x(ω,%)

G,L,j for any (0 ≤ j ≤ N) and $(ω,%)
G,L,j for any (0 ≤ j ≤ N) are

correspondent nodes and Christoffel numbers in [0, L] interval, respectively. For
SJ-G quadrature, x(ω,%)

G,L,j are zeros of P
(ω,%)
L,N+1 (x) and the weights are as follows:

$
(ω,%)
G,L,j =

C
(ω,%)
L,N

(L− x(ω,%)
G,L,j)x

(ω,%)
G,L,j [∂xP

(ω,%)
N+1 (x

(ω,%)
G,L,j)]

2 , (16)

where

C
(ω,%)
L,N =

L(ω+%+1)Γ (N + ω + 2) Γ (N + %+ 2)

(N + 1)!Γ (N + ω + %+ 2)
. (17)

Furthermore, for the SJ-GR quadrature, x(ω,%)
R,L,j are zeros of P (ω,%+1)

L,N (x) and

x
(ω,%)
R,L,0 = 0 and the weights are as follows:

$
(ω,%)
R,L,0 =

L(ω+%+1)(%+1)Γ2(%+1)Γ (N + 1) Γ (N + ω + 1)

Γ (N + %+ 2) Γ (N + ω + %+ 2)
, (18)

$
(ω,%)
R,L,j =

C
(ω,%+1)
L,N−1

(L− x(ω,%)
R,L,j)(x

(ω,%)
R,L,j)

2
∂x[P

(ω,%+1)
N (x

(ω,%)
R,L,j)]

2 , 1≤j≤N. (19)

Suppose that f(x) is the square-integrable function in terms of the Jacobi
weight function of w(ω,%)

L (x). Therefore, this function could be provided as the
shifted Jacobi polynomials in what follows:

f (x) =

∞∑
j=0

âjP
(ω,%)
L,j (x), (20)

wherein âj coefficients are defined as follows:

âj =
1

h
(ω,%)
L,j

∫ L

0

f (x)P
(ω,%)
L,j (x)w

(ω,%)
L (x) dx. (21)

146 Malaysian Journal of Mathematical Sciences



Numerical Solution of Space-time Variable Fractional Order Advection-Dispersion Equation
using Jacobi Spectral Collocation Method

Practically, approximation of f(x) can be used to cut the relation (20) into
N + 1 parts so that:

f (x) ' fN (x) =

N∑
j=0

âjP
(ω,%)
L,j (x). (22)

Similarly, an infinitely differentiable function like f (x, t) with two independent
variables in interval of Ω = [0, L] × [0, T ] can be written in some parts of the
Shifted Jacobi polynomials as comes next:

fN (x, t) =

N∑
i,j=0

âijP
(ω1,%1)
L,i (x)P

(ω2,%2)
T,j (t), (23)

where

âij =
1

h
(ω2,%2)
T,i h

(ω1,%1)
L,j

∫ T

0

∫ L

0

f (x, t)P
(ω2,%2)
T,i (t)P

(ω1,%1)
L,j (x)w

(ω2,%2)
T (t)w

(ω1,%1)
L (x) dxdt.

(24)

and also for f (x, y, t) with three independent variables in interval of Ω =
[0, L]× [0, I]× [0, T ] can be written as comes next:

fN (x, y, t) =

N∑
i,j,k=0

âijkP
(ω1,%1)
L,i (x)P

(ω2,%2)
I,j (y)P

(ω3,%3)
T,k (t). (25)

2.3.1 SJP variable fractional order derivatives

The basis of our numerical method is in approximating the solution of
(1) based on (25). Thus, by substituting (25) in (1), it is needed to furnish
the Riemann-Liouville and Caputo derivatives of f (x, y, t). We know that if
f (x) =(x− a)

n and n > −1 and η> 0, Riemann-Liouville derivative of f(x)
function would be derived as follows Diethelm (2010):

R
0 D

η
af (x) =

{
Γ(n+1)

Γ(n+1−η) (x− a)
n−η

, η − n /∈ N,
0, η − n ∈ N.

(26)

Furthermore, for n ≥ 0, the Caputo derivative of f(x) would be furnished as
follows Diethelm (2010):

Dξ
xf (x) =

{
0, if n ∈ {0, 1, . . . ,m− 1} ,

Γ(n+1)
Γ(n+1−ξ) (x− a)

n−ξ
, if (n ∈ N,n ≥ m) or (n /∈ N,n > m− 1) ,

(27)
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wherein m = dξe while d·e is the ceiling function. As a result, by considering
(26) and (27), the fractional derivatives with variable order of the Jacobi poly-
nomials and subsequently the fractional derivative of f (x, t) function could be
deduced. Therefore, by considering the analytic form of shifted Jacobi poly-
nomials of (13) and using (26), the Riemann-Liouville derivative of the shifted
Jacobi polynomials is calculated as follows:
R
0 D

η(x,y,t)
a P

(ω,%)
L,i (x) = P

(ω,%,η(x,y,t))
L,i (x)

=

i∑
s=0

(−1)
i+s Γ (i+ %+ 1) Γ (i+ s+ ω + %+ 1)

Γ (s+ %+ 1) Γ (i+ ω + %+ 1) (i− s)!Γ (s− η (x, y, t) + 1)Ls
xs−η(x,y,t).

(28)

Likewise, the same relation can be used for ρ (x, y, t) order fractional derivative.
In addition, using (27), the ξ(x, y) order Caputo fractional derivative is given
by (when 0 < ξ(x, y) ≤ 1):

D
ξ(x,y)
t P

(ω,%)
L,i (t) = P

(ω,%,ξ(x,y))
L,i (t)

=

i∑
s=1

(−1)
i+s Γ (i+ %+ 1) Γ (i+ s+ ω + %+ 1)

Γ (s+ %+ 1) Γ (i+ ω + %+ 1) (i− s)!Γ (s− ξ(x, y) + 1)T s
ts−ξ(x,y).

(29)

3. Method of Jacobi Collocation

Here, we implement a computational scheme based on Jacobi collocation
method so as to tackle the advection-dispersion equation with space-time vari-
able fractional order in the one-dimensional and two-dimensional cases. Col-
location points for the temporal and spatial variables are chosen from SJ-GR
and SJ-G points Canuto et al. (2006), respectively.

3.1 One-dimensional case

Advection-dispersion equation with space-time variable fractional order in
the 1D case is considered as follows:

D
ξ(x)
t f (x, t) = ϑR0 D

η(x,t)
x f (x, t)− κR0 Dρ(x,t)

x f (x, t) + S (f, x, t) ,

(x, t) ∈ Ω = [0, L]× [0, T ] ,

(30)

with the initial condition below:

f (x, 0) = ϕ1 (x) , (31)
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and the following side conditions:{
f (0, t) = ϕ2 (t) ,
f (L, t) = ϕ3 (t) ,

(32)

such that ϑ, κ > 0, 0 < ξ ≤ ξ(x) ≤ ξ ≤ 1, 1 < η ≤ η(x, t) ≤ η ≤ 2 and
0 < ρ ≤ ρ(x, t) ≤ ρ ≤ 1.

Remark 3.1. In this problem, the boundary conditions can be implemented as
Dirichlet, Neumann, or mixed. We only state the Dirichlet boundary conditions
since the algorithm is similar for each of the boundary conditions.

The approximate solution is considered as stated in subsection 2.3 based on
relation (23):

fN (x, t) =

N∑
i,j=0

aijP
(ω1,%1)
L,i (x)P

(ω2,%2)
T,j (t). (33)

For simplicity and summarization of the initial, side criteria and the frac-
tional derivatives of fN (x, t) in the rest of the work, the following relations are
defined:

Ri,j0 (x, t) = P
(ω1,%1)
L,i (x)P

(ω2,%2)
T,j (t) , (34)

Ri,j1 (x, t) = P
(ω1,%1)
L,i (x)P

(ω2,%2,ξ(x))
T,j (t) , (35)

Ri,j2 (x, t) = P
(ω1,%1,η(x,t))
L,i (x)P

(ω2,%2)
T,j (t) , (36)

Ri,j3 (x, t) = P
(ω1,%1,ρ(x,t))
L,i (x)P

(ω2,%2)
T,j (t) , (37)

which in relations (34)-(37), P (ω,%,w)
L,i (x) and P (ω,%,w)

T,j (t) are w-order fractional

derivatives of P (ω,%)
L,i (x) and P (ω,%)

T,j (t) functions, respectively. Now, substitut-
ing (33) in (30) and using (34)-(37), we have:

N∑
i,j=0

aijR
i,j
1 (x, t) = ϑ

N∑
i,j=0

aijR
i,j
2 (x, t)− κ

N∑
i,j=0

aijR
i,j
3 (x, t) + S

 N∑
i,j=0

aijR
i,j
0 (x, t), x, t

 .

(38)
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Furthermore, numerical behavior of the boundary and initial conditions will
be provided as follows:

∑N
i,j=0 aijR

i,j
0 (x, 0) = ϕ1 (x) ,∑N

i,j=0 aijR
i,j
0 (0, t) = ϕ2 (t) ,∑N

i,j=0 aijR
i,j
0 (L, t) = ϕ3 (t) .

(39)

Now, the Jacobi collocation method is implemented to solve (38) and (39).
In the Jacobi collocation scheme with shifts, the remainder of (38) in (N−1)N
collocation point is zero. Moreover, the initial and boundary conditions are
collocated in the collocation nodes.

Substituting the nodes in (38), (N − 1)N algebraic equation with (N + 1)
2

unknown values of aij would be furnished:

N∑
i,j=0

aijF
i,j
1

(
x

(ω1,%1)
G,L,r , t

(ωω2,%2)
R,T,τ

)
=S

 N∑
i,j=0

aijR
i,j
0 (x

(ω1,%1)
G,L,r , t

(ω2,%2)
R,T,τ ), x

(ω1,%1)
G,L,r , t

(ω2,%2)
R,T,τ

 ,

r = 1, . . . , N − 1, τ = 1, . . . , N,

(40)

where

F i,j1

(
x

(ω1,%1)
G,L,r , t

(ω2,%2)
R,T,τ

)
= Ri,j1

(
x

(ω1,%1)
G,L,r , t

(ω2,%2)
R,T,τ

)
− ϑRi,j2

(
x

(ω1,%1)
G,L,r , t

(ω2,%2)
R,T,τ

)
+ κRi,j3 (x

(ω1,%1)
G,L,r , t

(ω2,%2)
R,T,τ ).

(41)

Furthermore, (N − 1) algebraic equations are derived from the initial con-
ditions as follows:

N∑
i,j=0

aijR
i,j
0

(
x

(ω1,%1)
G,L,r , 0

)
= ϕ1

(
x

(ω1,%1)
G,L,r

)
, r = 1, . . . , N − 1, (42)

and (2N + 2) equations are furnished from boundary conditions as follows:
∑N
i,j=0 aijR

i,j
0

(
0, t

(ω2,%2)
R,T,τ

)
= ϕ2

(
t
(ω2,%2)
R,T,τ

)
, τ = 0, . . . , N,∑N

i,j=0 aijR
i,j
0

(
L, t

(ω2,%2)
R,T,τ

)
= ϕ3

(
t
(ω2,%2)
R,T,τ

)
, τ = 0, . . . , N.

(43)
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Mixing (40), (42), and (43), a system containing (N + 1)
2 equations with

(N + 1)
2 unknowns will be derived. After solving the system and calculating

aij coefficients, then the approximate solution of fN in each value of (x, t) in
the domain of (33) will be attained.

3.2 2D case

Here, we impose a similar algorithm to solve two-dimensional FADE (1)
with initial, side criteria (2) and (3), respectively.

Now, f (x, y, t) is approximated using triple SJPs as follows:

fN (x, y, t) =

N∑
i,j,k=0

aijkP
(ω1,%1)
L,i (x)P

(ω2,%2)
I,j (y)P

(ω3,%3)
T,k (t). (44)

The following relations are defined for summarization of the initial and side
criteria and fractional derivatives of f (x, y, t):

Ri,j,k0 (x, y, t) = P
(ω1,%1)
L,i (x)P

(ω2,%2)
I,j (y)P

(ω3,%3)
T,k (t) , (45)

Ri,j,k1 (x, y, t) = P
(ω1,%1)
L,i (x)P

(ω2,%2)
I,j (y)P

(ω3,%3,ξ(x,y))
T,k (t) , (46)

Ri,j,k2 (x, y, t) = P
(ω1,%1,η1(x,y,t))
L,i (x)P

(ω2,%2)
I,j (y)P

(ω3,%3)
T,k (t) , (47)

Ri,j,k3 (x, y, t) = P
(ω1,%1)
L,i (x)P

(ω2,%2,η2(x,y,t))
I,j (y)P

(ω3,%3)
T,k (t) , (48)

Ri,j,k4 (x, y, t) = P
(ω1,%1,ρ1(x,y,t))
L,i (x)P

(ω2,%2)
I,j (y)P

(ω3,%3)
T,k (t) , (49)

Ri,j,k5 (x, y, t) = P
(ω1,%1)
L,i (x)P

(ω2,%2,ρ2(x,y,t))
I,j (y)P

(ω3,%3)
T,k (t) . (50)

Substituting relation (44) in (1) and using relations (45)-(50), we have:

N∑
i,j,k=0

aijkR
i,j,k
1 (x, y, t) = ϑ(

N∑
i,j,k=0

aijkR
i,j,k
2 (x, y, t) +

N∑
i,j,k=0

aijkR
i,j,k
3 (x, y, t))

− κ(

N∑
i,j,k=0

aijkR
i,j,k
4 (x, y, t) +

N∑
i,j,k=0

aijkR
i,j,k
5 (x, y, t))

+ S

 N∑
i,j,k=0

aijkR
i,j,k
0 (x, y, t), x, y, t

 ,

(51)
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and, numerical behavior of initial and boundary conditions is as follows:

N∑
i,j,k=0

aijkR
i,j,k
0 (x, y, 0) = ϕ1 (x, y) , (x, y) ∈ Ω, (52)


∑N
i,j,k=0 aijkR

i,j,k
0 (0, y, t) = ϕ2 (0, y, t) , y ∈ [0, I], t∈[0, T ],∑N

i,j,k=0 aijkR
i,j,k
0 (L, y, t) = ϕ2 (L, y, t) , y ∈ [0, I], t∈[0, T ],∑N

i,j,k=0 aijkR
i,j,k
0 (x, 0, t) = ϕ2 (x, 0, t) , x ∈ [0, L], t∈[0, T ],∑N

i,j,k=0 aijkR
i,j,k
0 (x, I, t) = ϕ2 (x, I, t) , x ∈ [0, L], t∈[0, T ].

(53)

The results in (x
(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ ) points are examined to implement the

shifted Jacobi collocation scheme in (51), (52) and (53). Here, x(ω1,%1)
G,L,r for

any (r = 0, . . . , N), y(ω2,%2)
G,I,s , for any (s = 0, . . . , N), and t(ω3,%3)

R,T,τ for any (τ =

1, . . . , N) are roots of P (ω1,%1)
L,N+1 (x), P (ω2,%2)

I,N+1 (y), and P (ω3,%3+1)
T,N (t), respectively

while t(ω3,%3)
R,T,0 = 0. Therefore, collocating the equations (51), (52) and (53) in

collocation points (x
(ω1,%1)
G,L,r , y(ω2,%2)

G,I,s , t(ω3,%3)
R,T,τ ) is defined as follows:

N∑
i,j,k=0

aijkF
i,j,k
1 (x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ )

= S

 N∑
i,j,k=0

aijR
i,j
0 (x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ ), x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

 ,

r = 1, . . . , N − 1, s = 1, . . . , N − 1, τ = 1, . . . , N,

(54)

wherein

F i,j,k1

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
= Ri,j,k1

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
− ϑ(Ri,j,k2

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
+Ri,j,k3

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
)

+ κ(Ri,j,k4

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
+Ri,j,k5

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
).

(55)

while the initial and boundary conditions are

Ri,j,k0

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s , 0

)
= ϕ1

(
x

(ω1,%1)
G,L,r , y

(ω2,%2)
G,I,s

)
, r = 0, . . . , N, s = 0, . . . , N,

(56)
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∑N
i,j,k=0 aijkR

i,j,k
0 (0, y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ ) = ϕ2

(
0, y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
,

s = 0, . . . , N − 1, τ = 1, . . . , N,∑N
i,j,k=0 aijkR

i,j,k
0 (L, y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ ) = ϕ2

(
L, y

(ω2,%2)
G,I,s , t

(ω3,%3)
R,T,τ

)
,

s = 0, . . . , N − 1, τ = 1, . . . , N,∑N
i,j,k=0 aijkR

i,j,k
0

(
x

(ω1,%1)
G,L,r , 0, t

(ω3,%3)
R,T,τ

)
= ϕ2

(
x

(ω1,%1)
G,L,r , 0, t

(ω3,%3)
R,T,τ

)
,

r = 0, . . . , N − 1, τ = 1, . . . , N,∑N
i,j,k=0 aijkR

i,j,k
0 (x

(ω1,%1)
G,L,r , I, t

(ω3,%3)
R,T,τ ) = ϕ2

(
x

(ω1,%1)
G,L,r , I, t

(ω3,%3)
R,T,τ

)
,

r = 0, . . . , N − 1, τ = 1, . . . , N.

(57)

Now we attain a set of (N + 1)
3 algebraic equations. After solving this

system with a standard numerical method, fN (x, y, t) can be obtained in each
point of the domain Ω.

4. Computational Aspects

Four computational experiments are discussed to reveal the high efficacy of
the proposed approach. Findings obtained from various selections of ω and %
parameters in the Jacobi polynomials indicate that the method presents results
of high accuracy and is comparable for all choices of ω and %. In all instances, it
is only needed to compute EN in order to compare the approximated solution
with the true resolution.

EN (x, t) = |f (x, t)− fN (x, t)| ,
where f (x, t) and fN (x, t) are the exact and approximated solutions in (x, t),
respectively. In addition, the absolute error of L∞ is used as follows:

L∞ = max{EN (x, T ) : x∈[0, L]},

Example 4.1. Suppose the following 1D FADE:

D
ξ(x)
t f (x, t) = 2R0 D

η(x,t)
x f(x, t)− R

0 D
ρ(x,t)
x f (x, t) + S (x, t) ,

(x, t) ∈ Ω = [0, 1]× [0, 1],
(58)

with the following initial and side criteria:{
f (x, 0) = 5

(
x2 − x3

)
, 0 ≤ x ≤ 1,

f (0, t) = f (1, t) = 0, 0 ≤ t ≤ 1.
(59)
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Also, S(x, t) in (58) is defined by:

S (x, t) =
10x2 (1− x) t2−ξ(x)

Γ(3− ξ(x))
− 10(t

2
+ 1)

[
2x2−η(x,t)

Γ(3− η(x, t))
− 6x3−η(x,t)

Γ(4− η(x, t))

]
+ 5(t

2
+ 1)

[
2x2−ρ(x,t)

Γ(3− ρ(x, t))
− 6x3−ρ(x,t)

Γ(4− ρ(x, t))

]
.

where

ξ (x) = 1− 0.5e−x, (60)

η (x, t) = 1.7 + 0.5e−
x2

1000−
t
50−1, (61)

ρ (x, t) = 0.7 + 0.5e−
x2

1000−
t
50−1. (62)

The exact solution is f (x, t) = 5
(
t2+1

)
x2 (1− x), Zhang et al. (2014).

Results obtained from computational evidences of the problem have been
brought in Table 1. Using the algorithm presented in Section 3 for N = 6, we
will furnish fN (x, t). As shown in Table 1, for various parameters of ω and
%, the absolute error in various points in interval of [0,1] has been furnished.
At the end, the numerical results have been compared with the findings of
Zhang et al. (2014). Zhang uses finite difference method (FDM) to solve this
equation. Using FDM with 150 points, an error of 10−3 will be furnished;
however, utilizing Jacobi collocation method with 6 points, a highly accurate
solution is furnished which its error is near 10−16.

Table 1: Point to point error furnished through implementing Jacobi collocation method in Exam-
ple 4.1 by N = 6 and its comparison to FDMZhang et al. (2014) in N=150

Jacobi Collocation Method FDM
x ω1 = %1 = 0

ω2 = %2 = 0
ω1 = %1 = 0.5
ω2 = %2 = 0.5

−ω1 = %1 = 0.5
−ω2 = %2 = 0.5

ω1 = 1, %1 = 0
ω2 = 0, %2 = 1

N = 150

0 5.5511e-17 1.1102e-15 6.6613e-16 1.1102e-16 1.0001e-03
0.1 9.7145e-17 4.5797e-16 5.4123e-16 9.7145e-17 1.0492e-03
0.2 2.7756e-16 2.2204e-16 2.2204e-16 2.7756e-16 2.0690e-03
0.3 3.3307e-16 1.1102e-16 2.2204e-16 1.1102e-16 3.0214e-03
0.4 5.5511e-16 6.6613e-16 0 4.4409e-16 3.8254e-03
0.5 4.4409e-16 2.2204e-16 0 4.4409e-16 4.3921e-03
0.6 8.8818e-16 4.4409e-16 4.4409e-16 6.6613e-16 4.6258e-03
0.7 4.4409e-16 6.6613e-16 1.1102e-15 4.4409e-16 4.4228e-03
0.8 6.6613e-16 8.8818e-16 4.4409e-16 2.2204e-16 3.6700e-03
0.9 8.8818e-16 5.5511e-16 6.6613e-16 0 2.2424e-03
1 2.2204e-16 4.4409e-16 1.1102e-16 8.8818e-16 1.2354e-03
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In Figure 1, we illustrated the curves of the exact and approximated solu-
tions of (58) at t = 0.4, 0.6, 0.8, 1. Figure 2 shows the numerical solution in 3D
case. Figures 3 and 4 show the absolute error in one point and a fixed time,
respectively. All the figures are based on N = 6 and ω1 = ω2 = %1 = %2 = 0.
In figure 5, the absolute error of example 4.1 is plotted for different values of
the fractional order of derivatives. This figure shows that when the fractional
derivatives order approach to their integer values (ξ, ρ → 1, η → 2), the ab-
solute error also decreases substantially. Here the vertical axis represents the
absolute error of the approximate solution and the horizontal axis corresponds
to the parameter r:

r = 1− norm(1− ξ, 2− η, 1− ρ). (63)
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Figure 1: Comparison of the approximated and exact solutions of Example 4.1 in various timesfor
N = 6 and ω1=ω2=%1=%2 = 0.
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Figure 2: Numerical solution of Example 4.1 in 3D state for N = 6 and ω1=ω2=%1=%2 = 0.
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Figure 3: Absolute error of Example 4.1 in (0.5, t) point for N = 6 and ω1=ω2=%1=%2 = 0.
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Figure 4: Absolute error of Example 4.1 in (x, 0.5) point for N = 6 and ω1=ω2=%1=%2 = 0.
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Figure 5: The absolute error of example 4.1 when the fractional order of derivatives tends to their
integer values (ω1=ω2=%1=%2 = 0)

Example 4.2. Let us solve the following 1D FADE:

D
ξ(x)
t f (x, t) = 2R0 D

η(x,t)
x f(x, t)− R

0 D
ρ(x,t)
x f (x, t) + S (x, t) ,

(x, t) ∈ Ω = [0, 2π]× [0, 1],

(64)

with the following boundary and initial conditions:{
f (x, 0) = sin(x), 0 ≤ x ≤ 2π,

f (0, t) = f (2π, t) = 0, 0 ≤ t ≤ 1,
(65)

and

S (x, t) = sin (x)

∞∑
n=1

(−1)
n
t2n−ξ(x)

Γ (2n+ 1− ξ(x))
− 2cos(t)

∞∑
n=0

(−1)
n
x2n+1−η(x,t)

Γ (2n+ 2− η(x, t))

+ cos (t)

∞∑
n=0

(−1)
n
x2n+1−ρ(x,t)

Γ (2n+ 2− ρ (x, t))
,

(66)

where ξ, η, ρ are valued based on three following categories:

case 1 : ξ (x) = 0.8 + 0.01ln(5x), η(x, t)= 1.8 + 0.01x2t2, ρ (x, t) = 0.8 + 0.01x2sint ,

case 2 : ξ (x) = 0.8, η(x, t)= 1.8, ρ (x, t) = 0.8,

case 3 : ξ (x) = cos(
x

2π
+0.1), η (x, t) = 2− (sin2(tcos2(x) + 0.1), ρ (x, t) =

ext

1000
.

Exact solution is given by f (x, t) = sin(x) cos(t).
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Results of this problem have been presented in Tables 2 and 3. As shown in
Table 2, the absolute errors for ξ, η, ρ in case (1) and various parameters of ω ,
% and N = 8, 10, 12, 14, 16, 18 have been compared with each other. Finally, the
findings obtained through the Jacobi collocation method have been compared
to the FDM results Zhang et al. (2014). Table 3 presents the absolute error for
different order derivatives in various points.

Regarding the findings in Tables 2 and 3, comparing to other approaches
including the FDM Zhang et al. (2014), it could be observed that the scheme
is efficient with finite number of points. Figure 6 reveals a comparison of the
exact and approximated solutions. In Figure 7, numerical solution has been
shown for various times in the 3D case. All the figures are drawn for N = 18
, ω1 = ω2 = %1 = %2 = 0 and case (1). In figure 8, the absolute error of example
4.2 is plotted for different values of the fractional order of derivatives.

Table 2: Absolute error obtained through implementing Jacobi collocation method in Example 4.2
in various points with derivative of ξ, η, ρ order in case (1) and its comparison to FDM Zhang et al.
(2014).

Jacobi Collocation Method FDM
N ω1 = %1 = 0

ω2 = %2 = 0
ω1 = %1 = 0.5
ω2 = %2 = 0.5

−ω1 = %1 = 0.5
−ω2 = %2 = 0.5

ω1 = 1, %1 = 0
ω2 = 0, %2 = 1

-

8 4.6698e-04 8.8157e-04 1.1440e-03 2.5695e-03 7.9725e-02
10 1.3348e-05 2.7840e-05 3.1508e-05 9.0421e-05 6.5264e-02
12 2.4776e-07 5.6105e-07 5.8426e-07 1.9879e-06 5.4834e-02
14 3.2778e-09 7.9674e-09 7.8259e-09 3.0277e-08 4.7195e-02
16 3.1670e-11 8.6281e-11 7.9408e-11 3.4125e-10 4.1679e-02
18 4.6937e-13 5.1170e-13 6.2958e-13 2.6182e-12 3.7263e-02

Table 3: Comparison of the absolute error obtained in Example 4.2 in various points with deriva-
tives of fixed or variable order for ω1 = ω2 = %1 = %2 = 0

Order N=8 N=10 N=12 N=14 N=16 N=18
case 1 4.6698e-04 1.3348e-05 2.4776e-07 3.2778e-09 3.1670e-11 4.6937e-13
case 2 8.0552e-04 2.4998e-05 4.9999e-07 7.0729e-09 7.3890e-11 7.6700e-13
case 3 1.2082e-03 4.2078e-05 9.3519e-07 1.4175e-08 1.5777e-10 1.5018e-12

158 Malaysian Journal of Mathematical Sciences



Numerical Solution of Space-time Variable Fractional Order Advection-Dispersion Equation
using Jacobi Spectral Collocation Method

0 1 2 3 4 5 6 7

x

-1

-0.5

0

0.5

1

u
N
(x

,t
)

u(x,0.4)

u
N

(x,0.4)

u(x,0.6)

u
N

(x,0.6)

u(x,0.8)

u
N

(x,0.8)

u(x,1)

u
N

(x,1)

Figure 6: Comparison of the approximated and true solutions of Example 4.2 in various times for
N = 18, ω1 = ω2 = %1 = %2 = 0 and case (1).
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Figure 8: The absolute error of example 4.2 when the fractional order of derivatives tends to their
integer values (ω1=ω2=%1=%2 = 0)

Example 4.3. Consider the following two-dimensional FADE

D
ξ(x,y)
t f (x, y, t) = 2(R0 D

η1(x,y,t)
x f (x, y, t) + R

0 D
η2(x,y,t)
y f (x, y, t)) + S (x, y, t) ,

(x, y, t) ∈ [0, 1]× [0, 1]× [0, 1] ,

(67)

where

S (x, y, t) =
2t2−ξ(x,y)x2y2

Γ (3− ξ (x, y))
− 4t2(

x2−η1(x,y,t)y2

Γ (3− η1 (x, y, t))
+

x2y2−η2(x,y,t)

Γ (3− η2 (x, y, t))
).

(68)

Initial and boundary conditions are selected so that the exact solution is as
follows:

f (x, y, t) = t2x2y2, (69)

In addition, the orders of fractional derivatives are valued based on three
following categories:

case1 : ξ (x) = 0.8, η1 (x, t) = 1.8, η2 (x, t) = 1.8,

case2 : ξ (x) = 0.5 +
xy

5
, η1 (x, t) = 0.2 +

√
1 + sinh(xyt),

η2 (x, t) = 0.5 +
√

1 + tanh(xyt),

case3 : ξ (x) = 0.5 +
xy

5
, η1 (x, t) = 0.2 +

√
1 + sinh(xyt), η2 (x, t) = 1.8.
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The mentioned algorithm in subsection 3.2 is applied to tackle this problem.
The results have been presented in Table 4 for N = 4 and N = 6. In this table,
absolute error is furnished for various order derivatives and different parameters
of ω and %. In Figure 9, the approximated solution at t = 1 is presented for
parameters of −ω1 = −%1 = ω2 = %2 = ω3 = %3 = 0.5, and the case (2). In
figure 10, the absolute error of example 4.3 is plotted for different values of the
fractional order of derivatives.

Table 4: Absolute error obtained through implementing Jacobi collocation method in Example 4.3
with N = 4, 6 for variable and fixed fractional order derivative.

N=4
Order ω1 = %1 = 0

ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0.5
ω3 = %3 = 0.5

ω1 = %1 = −0.5
ω2 = %2 = −0.5
ω3 = %3 = −0.5

case 1 3.2240e-09 2.7902e-09 1.1239e-09 7.7602e-16
case 2 3.7630e-09 2.7902e-09 1.3399e-09 6.0883e-16
case 3 4.0157e-09 2.7902e-09 1.3350e-09 5.7067e-09

N=6
Order ω1 = %1 = 0

ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0.5
ω3 = %3 = 0.5

ω1 = %1 = −0.5
ω2 = %2 = −0.5
ω3 = %3 = −0.5

case 1 2.4023e-15 6.3005e-16 9.3114e-16 7.7896e-16
case 2 3.1850e-09 8.8243e-09 6.8032e-16 9.4015e-16
case 3 3.1850e-09 1.2154e-15 8.0023e-16 1.5399e-15
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Figure 9: Computational solution of Example 4.3 at t = 1 for N = 6, −ω1 = −%1 = ω2 = %2 =
ω3 = %3 = 0.5 and case (2).
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Figure 10: The absolute error of example 4.3 when the fractional order of derivatives tends to their
integer values (ω1 = %1 = ω2 = %2 = ω3 = %3 = 0)

Example 4.4. Here, we take into account the following equation:

D
ξ(x,y)
t f (x, y, t) = (R0 D

η1(x,y,t)
x f (x, y, t) + R

0 D
η2(x,y,t)
y f (x, y, t))

− ((R0 D
ρ1(x,y,t)
x f (x, y, t) + R

0 D
ρ2(x,y,t)
y f (x, y, t))) + S (x, y, t) ,

(x, y, t) ∈ [0, 1]× [0, 1]× [0, 1] ,

(70)

where

S (x, t) =
10x2y2 (1− x) (1− y) t1−ξ(x)

Γ(2− ξ(x))

− 10(t+ 1)(1− y)y2

[
2x2−η1(x,t)

Γ (3− η1 (x, t))
− 6x3−η1(x,t)

Γ (4− η1 (x, t))

]
+ 10(t+ 1)(1− y)y2

[
2x2−ρ1(x,t)

Γ(3− ρ1(x, t))
− 6x3−ρ1(x,t)

Γ(4− ρ1(x, t))

]
− 10(t+ 1)(1− x)x2

[
2y2−η2(x,t)

Γ (3− η2 (x, t))
− 6y3−η2(x,t)

Γ (4− η2 (x, t))

]
+ 10(t+ 1)(1− x)x2

[
2y2−ρ2(x,t)

Γ(3− ρ2(x, t))
− 6y3−ρ2(x,t)

Γ(4− ρ2(x, t))

]
.

(71)

162 Malaysian Journal of Mathematical Sciences



Numerical Solution of Space-time Variable Fractional Order Advection-Dispersion Equation
using Jacobi Spectral Collocation Method

In addition, the orders of fractional derivatives are valued based on three
following categories:

case1 : ξ (x) = 0.8, η1 (x, t) = 1.8, η2 (x, t) = 1.2, ρ1 (x, t) = 0.9, ρ2 (x, t) = 0.3,

case2 : ξ (x) =

√
0.1 +

xy + y

5
, η1 (x, t) = 0.1 + (1 + tanh(xyt)),

η2 (x, t) =
11 + xy + yt

10
, ρ1 (x, t) = 0.1 + sin(xyt), ρ2 (x, t) = (0.1 + sin(xyt))2,

case3 : ξ (x) =

√
0.1 +

xy + y

5
, η1 (x, t) = 0.1 + (1 + tanh(xyt)), η2 (x, t) = 1.2,

ρ1 (x, t) = 0.1 + sin(xyt), ρ2 (x, t) = 0.3.

Initial and boundary conditions are selected so that the exact solution is as
follows:

f (x, y, t) = 10(t+ 1)(xy)
2
(1− x)(1− y). (72)

The obtained results for N = 4 and N = 8 at t = 1 and for various
parameters of ω and % have been shown in Table 5. It is tried to furnish and
compare the absolute error for various values of derivatives of fixed or variable
orders. As it can be seen, by using considerably small number of points and
finite collocation points, the best results can be obtained, which shows high
efficacy of the scheme. In Figure 11, the approximated solution of Example 4.4
have been shown at t = 1 for parameters of ω1 = %1 = ω2 = %2 = ω3 = %3 =
−0.5 and case (2). In figure 12, the absolute error of example 4.4 is plotted for
different values of the fractional order of derivatives.

Table 5: The absolute error furnished through Jacobi collocation method in Example 4.4 with
N = 4, 8 for fixed and variable fractional order derivatives.

N=4
Order ω1 = %1 = 0

ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0.5
ω3 = %3 = 0.5

ω1 = %1 = −0.5
ω2 = %2 = −0.5
ω3 = %3 = −0.5

case1 1.5104e-10 1.0065e-09 7.1329e-10 1.3359e-09
case2 5.0066e-10 7.1728e-10 5.4320e-10 1.2884e-09
case3 3.1525e-10 5.7889e-10 5.6960e-10 1.8027e-09

N=8
Order ω1 = %1 = 0

ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0
ω3 = %3 = 0

ω1 = %1 = −0.5
ω2 = %2 = 0.5
ω3 = %3 = 0.5

ω1 = %1 = −0.5
ω2 = %2 = −0.5
ω3 = %3 = −0.5

case1 8.7174e-16 1.9361e-15 2.1672e-15 1.9468e-15
case2 1.4861e-15 5.5106e-10 2.6045e-15 2.9432e-15
case3 9.2311e-10 2.9177e-15 2.7667e-15 2.9946e-15
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Figure 11: Numerical solution of Example 4.4 at t=1 for N=8 and case (2), ω1 = %1 = ω2 = %2 =
ω3 = %3 = −0.5
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Figure 12: The absolute error of example 4.4 when the fractional order of derivatives tends to their
integer values (ω1 = %1 = ω2 = %2 = ω3 = %3 = −0.5)

5. Conclusions

A spectral collocation method was used in this article to furnish the nu-
merical solution of variable order FADE in 1D and 2D cases. The solution
of advection-dispersion equation is approximated using the Jacobi functions,
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which are considered as the basic functions, and the collocation points are cho-
sen from SJ-GR-c and SJ-G-c interpolation points for time and space variables,
respectively. Finally, using this collocation method, a system of algebraic equa-
tions would be furnished which had been solved with a standard computational
method. Numerical solutions obtained in the last section indicated that this
method has considerably high accuracy compared to the other existing methods
such as the FDM approach.
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